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Introduction
Honey bees, by their pollination activity, contribute to

vegetal biodiversity stability and sustainable agriculture
[1].  But  their  populations have declined worldwide in
recent  years.  A  variety  of  stressors  have  been
implicated,  including  climate  changes,  agricultural
practice and pesticides. In addition to the loss of hives
ascribed  to  acute  exposition  to  pesticide  overdoses,
chronic exposition to sub-lethal doses of pesticides or
metabolites present on bee, in hives or even into royal
jelly  has  been  suspected  to  be  involved  in  this
phenomenon. Nevertheless, little is known concerning
the mechanisms of insecticide sub-lethal toxicity. Many
of worldwide used insecticides act  on specific  insect
neuronal  receptors  and  ion  channels,  including
nicotinic receptors and voltage-gated sodium channels
(VGSCs) [2]. These compounds also act at low doses
on vertebrate  and invertebrate  voltage-gated calcium
channels (VGCCs) [3]  [4]  [5]•• [6],  but the impact on
bee physiology is still unknown. 

VGCCs  are  macromolecular  complexes  which
localize in the plasma membrane, open in response to
membrane depolarization and mediate  a  subsequent
influx of extracellular calcium ions (Ca2+). Ca2+ entry in
cell generates both a depolarizing electrical signal and
a chemical signal. Indeed, Ca2+ regulates many crucial
processes  including  hormone  and  neurotransmitter
release, muscle contraction and gene expression [7].
As found for other insects, the sequencing of the Apis
mellifera genome [8]•• reveals that it encodes different
VGCC subunits. 

This  review  is  focused  on  the  role  of  VGCCs  in
insecticide toxicity. After a presentation of  the VGCC
structure and their putative sequences in Apis mellifera
genome, we summarize the current knowledge on Ca2+

currents recorded in different honeybee cells and their
identified physiological roles. Finally, we review the last
studies  concerning the  toxicity  of  neuropeptides  and
insecticides  on  VGCCs.  These  considerations
demonstrate  that  molecular  tools  are  necessary  to

assess  the  roles  of  VGCCs in  honeybee physiology
and toxicity and also suggest that insect VGCCs could
be a more specific target for future insecticides. 

Voltage-gated Calcium Channels 
VGCCs are  transmembrane  proteins  which  belong

with  VGSCs  to  a  superfamily  of  structurally  related
voltage-gated ion channels. The voltage-gated calcium
selective pore is formed by the α1 subunit, a 170–250
kDa  protein,  which  comprises  four  homologous
domains  constituted  by  six  putative  transmembrane
segments  (S1-S6)  (Figure  1a).  The  four  domains,
connected  by  intracellular  linkers,  fold  circularly
together  to  form  a  pore.  The  S5  and  S6  segments
define the wall of the pore whereas the membrane re-
entrant loops constitute the ion-selectivity filter. The S4
segments carry multiple positive charges and by their
ability  to  move  through  the  membrane  under  the
influence of changes in the electric field act as voltage
sensors and open the channel pore [9]. 

Electrophysiological  studies  performed  with
vertebrates  VGCC  subunits  have  demonstrated  that
the  α1  subunit  largely  determines  both  the
pharmacological  and  biophysical  properties  of  Ca2+

currents.  These  properties  have  defined  different
current  subtypes,  according  to  their  Low  or  High
Voltage for Activation (LVA or HVA), their Long-lasting
or  Transient kinetics of inactivation (L or  T-type), and
their  sensitivity or not to Dihydropyridines (DHP) and
different toxins (Figure  1b). In vertebrates, ten genes
coding for different α1 subunits underlie this diversity
and  can  be  grouped  in  three  major  families  on  the
basis  of  their  amino acid  sequence  similarity:  CaV1,
CaV2 and CaV3 [10]. 

CaV1  and  CaV2  α1  subunits  are  associated  with
auxiliary  subunits:  the extracellular  α2 subunit,  the δ
subunit  linked to the α2 subunit  via a disulfide bond
and  to  the  plasma  membrane  through  a
glycosylphosphatidylinositol  (GPI)  anchor  [11],  the
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Honey bees, which enhance agricultural productivity and help maintain biodiversity by their pollination
activity,  have declined worldwide in last  years.  Potential  stressors causing colony collapse disorders
include agricultural insecticides, which target principally ion channels of insect nervous system. Among
them,  voltage-gated  calcium  channels  underlie  a  multitude  of  intracellular  processes,  such  as  gene
regulation, neurotransmission and muscle contraction. However, in honey bees, little is known about their
biophysical properties and pharmacology. In this review, we discuss their physiological roles in honey
bees, notably in the olfactory system and muscle activity,  and analyze their  potential  involvement in
insecticide toxicity in light of studies on their modulation by neurotoxins and pyrethroids.



2 / 11 Calcium Channels in Honey Bees. A. Quintavalle

cytosolic  β  subunit,  and  in  some  cases,  a
transmembrane γ subunit. α2-δ, β and γ subunits finely
modulate the properties of the α1 subunit, such as the
kinetics and the voltage dependence of activation and
inactivation [3]. In addition, the β and α2-δ subunits are
reported  to  facilitate  membrane  trafficking  and

membrane  insertion  of  the  channels  [11].  Auxiliary
subunits can also modify the α1 subunit sensitivity to
certain  molecules.  For  example,  a  variant  β  subunit
confers praziquantel-sensitivity in platyhelminths [12]. 
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Figure  1:  Presentation of  VGCCs. a.  Schematic  representation  of  the  VGCC molecular  structure  and membrane
topology. VGCC pore is formed by the α1 subunit,  which comprises four homologous domains (I-IV) constituted by six
transmembrane segments (S1-6). The S4 segments contain positive charges and act as voltage sensors. S5, S6, and the re-
entrant loops form the walls of the pore. HVA VGCC comprises in addition one of each α2-δ, γ and β subunits. (Adapted from
King, 2007 [3]).  b. Correspondence between vertebrate α1 subunits and the identified calcium currents, their main
localization, function and defining pharmacology. 



3 / 11 Calcium Channels in Honey Bees. A. Quintavalle

Identification of genes encoding 
voltage-gated calcium channels in 
insects and in Apis mellifera 

The  analysis  of  the  Drosophila  melanogaster
genome revealed that it encodes three α1 subunits, a
single  β  subunit,  three  α2-δ  subunits  and  a  single
putative  γ  subunit  [13].  The  amino  acid  sequence
comparison  of  the  three  α1  subunits,  designated
Dmca1D, Dmca1A and Ca-α1T, shows that they can be
classified respectively as CaV1, CaV2 and CaV3-type
channels, corresponding to the three families identified
in vertebrates [10]. The analysis of other invertebrate
genomes  reveals  a  single  ortholog  for  the  CaV1-,
CaV2-,  CaV3-type  α1  subunits  encoded  in  the
Drosophila genome [14]. 

Similarly,  the  Apis  mellifera genome  [8]•• contains
three genes encoding α1-subunit  types,  three  genes
encoding α2-δ subunits and a single gene encoding a
β subunit. The alignment of α1 subunit sequences from
Drosophila melanogaster and  Apis mellifera genomes
indicates  that  VGCCs  have  been  less  conserved
throughout  the  course  of  insect  evolution  than  the
VGSCs [15]. The percent identity between the CaV1 of
the two insects is 75 %, between the CaV2, 85 %, and
between the CaV3, 89 %. This suggests specificities
between  insects  VGCCs,  potentially  underlying
differences of pharmacological sensitivities. Therefore,
it could easier to develop insecticides targeting VGCCs
which kill pests and keep honeybees alive. 

Invertebrate  Ca2+ channels  possess
electrophysiological  properties  and  pharmacological
sensitivities  which  are  distinct  from  their  vertebrate
counterpart, thus disrupting the classic classification of
currents in L-type, N-type, P/Q-type, R-type and T-type
[15]. So a molecular classification in CaV1, CaV2, and
CaV3 types based on the sequence homology between
α1  subunits  appears  more  relevant  for  invertebrate
VGCC  [9].  Ca2+ current  diversity  in  invertebrates  is
further  explained  by  different  mechanisms,  including
RNA  editing,  the  alternative  splicing  of  subunit
transcripts,  post-translational  modifications  and  the
presence of auxiliary subunits [9]. 

Calcium current diversity in Apis 
mellifera and physiological roles 

To date, no successful heterologous expression of a
functional  recombinant  honeybee  VGCC  has  been
reported in the literature and none sequence has been
cloned.  The  biophysical  and  pharmacological
characterization of these channels is then quite poor.
Nevertheless,  honeybee  nervous  and  muscular
systems  have  been  studied  at  the  cellular  and
molecular  level  with  electrophysiological  techniques.
Hence,  several  ionic  currents,  including  potassium,
sodium and calcium currents, have been characterized
in isolated, cultured neurons or muscular fibres. 

Olfactory pathway and memory formation 

In  honeybees,  smells  are  sensed  by  olfactory
receptor neurons (ORNs) whose dendrites are located
inside structures, the sensilla, present on antenna [16].
The ORNs express each a single functional receptor
gene and send their  axon to the antennal lobes,  the
centres for primary processing of olfactory information
in the insect brain (Figure  2a). In the antennal lobes,
ORN axons converge according to their receptor type
into  specific  spheroidal  areas,  called  glomeruli,  and
form synapse with projection neurons (PNs) and local
interneurons (LNs). PNs relay olfactory information to
the  lateral  protocerebral  lobes  and  the  mushroom
bodies,  both  located  in  the  protocerebrum.  In  the
mushroom body calyces,  the  PNs synapse  onto the
Kenyon cells, the intrinsic elements of the mushroom
bodies.  Both  the  antennal  lobes  and  the  mushroom
bodies are involved in memory formation [17]. 

Studying ionic currents in the isolated Kenyon cells
somata by tight-seal whole-cell  recording,  Schäfer  et
al. identified a Ca2+ current that is completely blocked
at 50 μM of cadmium (Cd) and is affected by verapamil
and nifedipine, two blockers of L-type currents, only at
high concentrations (100 μM) [18]••. The substitution of
Ca2+ with barium (Ba2+) increased the Ca2+ current and
slows  the  run-down  of  the  current,  indicating  that
VGCC are more permeable to Ba2+ than to Ca2+ and
suggesting that the current is inactivated or regulated
in a Ca2+-dependent manner, two properties reported
for vertebrate L-type Ca2+ current. Whole-cell recording
from  honeybee  ORNs  led  to  the  detection  in  some
ORNs  of  a  similar  Cd-sensitive  Ca2+ current  [19].
Another  study  analysed  the  voltage-sensitive  ionic
currents  of  cultured  antennal  lobe  PNs  and  Kenyon
cells  in  the honeybee brain  [20]•.  In  the two neuron
classes, the densities of currents through VGCC and
the  voltage-dependency  of  current  activation  were
similar: Ca2+ currents activated rapidly and inactivated
slowly. 

Moreover,  the  involvement  of  Ca2+ in  synaptic
plasticity  and  in  the  regulation  of  gene  expression
underlying the long-term memory has been tested by
Perisse et al.  [21]• by using the Pavlovian appetitive
conditioning of the proboscis extension reflex, in which
honeybees learn to associate an odour with a sucrose
reward.  The  modulation  of  the  intracellular  Ca2+

concentration in the brain showed that a Ca2+ influx is
both  a  necessary  and  a  sufficient  signal  for  the
formation  of  olfactory  protein-dependent  long-term
memory. These observations suggest  that  the VGCC
expressed in neurons could play an important role in
the olfactory long-term memory.

Control of the antennal movement 

The  complex  and  rich  behaviour  of  honey  bees
require  the  gathering  of  sensory  information  by  the
antenna.  These  sense  organs  contain
mechanoreceptor,  chemoreceptor,  temperature-,
humidity-, and CO2-sensitive receptor neurons, which
send projections into the antennal lobes or dorsal lobes
(Figure  2b)  [22].  Six  muscles  control  antennal
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movements  in  the  honey  bee:  four  of  them  are
responsible  for  moving  the  basal  segment  of  the
antenna  (the  scape),  and  the  two  others  the  distal
segment (the flagellum). These muscles are controlled
respectively by nine and six motor neurons, whose cell
bodies  are  located  in  the  soma  layer  lateral  of  the
dorsal  lobes  in  the  deutocerebrum  [22].  Whole-cell
patch-clamp  recordings  in  cultured  antennal  motor
neurons, in intact brains, in semi-intact brains and also
in  brain  slices  revealed  a  Cd-sensitive  Ca2+ current
which activated above -45 to -40 mV, with a maximum
around – 15 mV,  similarly  to those found in Kenyon
cells [23]•. 

Muscle activity 

Proper  muscle  activities  underlie  many  honeybee
tasks,  including  honeycomb  cleaning,  nursing,
thermogenesis,  flight  foraging,  and  inter-individual
communication.  The  electrical  properties  of  the
honeybee  skeletal  muscle  fibre  were  examined  by
using  the  whole-cell  patch  clamp  technique  on
enzymatically  isolated  skeletal  muscle  fibres  from
honeybee  leg  [25]••.  Both  Ca2+ and  K+ currents
appeared to be involved in shaping actions potentials
in  single  muscle  fibre,  and  the  inward  current
responsible for the rising phase of the action potential
seems  to  be  carried  by  VGCCs.  Indeed,  action
potentials were blocked by Cd2+ and La3+, two VGCC
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Figure 2 Anatomic elements of the honeybee head. a. Overview of the olfactory system in a schematic front view of
the honeybee head. Olfactory information is gathered by olfactory receptor neurons located in antenna (blue), which send
projections into glomeruli (G) located in antennal lobes (purple and green) and connect the projection neurons (PN) and local
interneurons (LN). PN relay olfactory information to Mushroom bodies (red), involved notably in olfactory memory. From Galizia
and Rossler, 2010 [16].  b. Schematic lateral view of the head capsule and the antenna. The antenna comprises three
parts, the scape, the pedicel and the flagellum. Antennal muscles are controlled by motor neurons, whose the cell bodies are
located in the soma layer lateral of the dorsal lobes in the deutocerebrum. AN, antennal nerve; DC, deutocerebrum; OL, optic
lobe; PC, protocerebrum; PPL, posterior protocerebral lobe; SEG, subesophageal ganglion; VNC, ventral nerve cord. Scale
bar: 1mm. From Ai et al., 2007 [24]. 
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blockers,  but  not  by  tetrodotoxin  (TTX),  a  VGSC
inhibitor,  suggesting,  as  opposed  to  vertebrate
muscles, a lack of sodium current in honeybee muscles
[25]•• (Figure  3).  In  addition,  it  was  observed  that
action  potentials  lead  to  a  brief  elevation  of  the
intracellular  Ca2+ concentration  which  is  called  Ca2+

transient. The Ca2+ influx through VGCC could trigger
the Ca2+-dependent release of Ca2+ from sarcoplasmic
reticulum, leading to the Ca2+ transients in response to
action  potentials,  and  finally  to  proper  muscle
contraction [5]••. 

These  studies  provide  evidence  that  Ca2+ currents
could  contribute  to  neuromodulation,  synaptic
transmission, action potential  generation, and muscle
contraction.  So,  VGCCs  appear  to  be  involved  in
crucial  physiological  roles,  including  the  detection,
processing and memory of complex odours, the control
of  antennal  movement  and  the  proper  activity  of
muscles. 

Toxicity of toxins and pharmaco-
logical agents upon VGCCs revealed 
by electrophysiological and 
pharmacological studies

The  venoms  of  numerous  arthropods,  cnidarians,
molluscs, and vertebrates contain a huge diversity of
peptidic neurotoxins that target ion channels, including

VGSCs and VGCCs [15]. Some of these toxins have
been used to define vertebrate Ca2+ current subtypes,
but the differences of structure between insect VGCCs
and  their  vertebrate  counterparts  are  sufficient  to
disrupt  this  pharmacological  characterization.  In  the
past  decade,  the  repertoire  of  peptidic  toxins  that
specifically modulate the activity of insect VGCCs has
grown, offering the basis for a potential development of
novel  insecticides  [3].  Examples  of  toxins  blocking
insect VGCC are reported in the Table  1a. Regarding
honeybee, it appears crucial to determine precisely the
effects of these toxins on molecularly-identified VGCCs
to develop molecular screens testing pesticide toxicity
toward honey bees. 

Among synthetic insecticides, pyrethroids are widely
used for forty years in agriculture and in public health
to  control  insect  pests  and  disease  vectors,
respectively  [26].  Due  to  the  risk  of  exposure  and
adverse effects  in  the population,  studies have been
performed to discern their mechanisms of toxicity and
neurotoxic actions. Their insecticidal actions are known
to depend on their  ability to bind to and alter  insect
VGSCs  [27].  However,  studies  on  mammalian
channels have suggested that other target sites could
be involved in the acute and chronic neurotoxic effects
of pyrethroids, including particularly VGCC [28]. 

Pyrethroids were initially divided into two subgroups
according  to  the  distinct  intoxication  syndromes  that
they produce in mammals: the T-syndrome pyrethroids
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Figure 3: The inward current responsible for the rising phase of the action potential is carried by VGCC in honeybee
muscle fibres. a,b. Current-clamp experiments in muscle fibres from honeybee. Tetrodotoxin (TTX), a voltage-gated
sodium channel inhibitor, had no effect on the action potential (a), whereas the VGCC blockers Cd2+ and La3+ (b) converted the
regenerative action potential response (black line) into an electrotonic response (broken line). Em, voltage command.  c,d.
Whole cell voltage-clamp currents in muscle fibres from honeybees. A series of depolarizations bringing the membrane
potential from -80 mV to -30 mV, -10, +10, and +30 mV over a period of 200 ms activated both inward and outward currents
(bi). In a depolarized muscle fibre from -80 mV to +10 mV for 100 ms, Cd 2+ and La3+ (lower trace), contrary to TTX (middle
trace),  block the inward component  of  the voltage activated currents.  Cd2+,  cadmium; La3+,  lanthanum. From Collet  and
Belzunces, 2006 [25].
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induce a tremor response whereas the CS-pyrethroids
induce a choreoathetosis with salivation response [29].
Another refers to their chemical structure: the Type II
pyrethroids, but not the Type I, contain an α-cyano-3-
phenoxybenzyl moiety. Type I compounds are usually
considered to produce the T-syndrome of intoxication
and Type II the CS-syndrome, but this correspondence
is  not  perfect.  The  different  syndromes produced by
these structurally-distinct pyrethroids may be explained

partially by their different effects on VGCCs [4]. 

Patch-clamp recordings  were  used  to  examine  the
alterations  of  VGCCs  by  pyrethroids,  and
representative results are reported in the Table  1b. L-
and T-type currents were described to be inhibited by
tetramethrin (Type I) in neuroblastoma cells, in cardiac
sino-atrial node cells, and in intestinal smooth muscles
cells  [30].  Hildebrand  et  al.  also  reported  that  all
classes  of  mammalian  VGCCs  are  targeted  by
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Table 1: Compounds modulating voltage-gated calcium channels. a. Examples of toxins targeting insect VGCC. DUM
neurons:  dorsal  unpaired median neurons.  b.  Effects  of  pyrethroids on electrophysiological  measures of  VGCC
function.

1 Block and increase refer to effects on peak current amplitude. 
2  T422E is the mutation of the threonine 422 into glutamic acid, mimicking complete phosphorylation of the CaV2.2 channel.
Question marks mean that the type of channel or current is only a hypothesis. HVA, MVA, LVA: High-, Mid-, Low- Voltage for
Activation.
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allethrin,  a  Type I  pyrethroid  [31]•.  For  each subunit
tested, allethrin produced a significant acceleration of
the inactivation kinetics and a hyperpolarizing shift in
the voltage dependence of inactivation. 

The  review of  Shafer  and  Meyer  presents  studies
which  examine  the  effects  of  pyrethroids  on
neurotransmitter  release  by  using  mammalian  brain
presynaptic  terminals  (synaptosomes)  or  brain  slice
preparations [30].  But,  at that  time, studies were not
providing a  comprehensive and clear  mechanism for
the  pyrethroid-induced  neurotransmitter  release.
Indeed,  in  some  cases,  the  release  was  completely
inhibited by TTX, suggesting an effect via the VGSCs.
But in other cases, pyrethroid-dependent release was
only  partially  sensitive  to  TTX,  correlated  with  Ca2+

uptake and therefore, was ascribed to a direct effect of
pyrethroids on VGCCs. In a similar study, Symington et
al.  tested the effect of eleven commercially available
pyrethroids  on  both  the  Ca2+ uptake  and  the
depolarization-evoked  neurotransmitter  release  in  rat
brain synaptosomes [32]•.  Five out of the six Type II
pyrethroids and one of the five Type I pyrethroids were
potent  enhancers  of  both  Ca2+ and  neurotransmitter
release in presence of TTX. These results suggested
therefore that some pyrethroids, and especially those

of  Type  II,  directly  enhance  neurotransmitter  release
through  an  increase  of  voltage-dependent  Ca2+

currents. 

However,  the  analysis  of  the  action  of  eleven
pyrethroids  into  cultured  mouse  brain  neocortical
neurons  failed  to  confirm a  direct  action  on  VGCCs
[33]•. Indeed, nine out of eleven pyrethroids triggered a
concentration-dependant increase in intracellular  Ca2+

which was completely inhibited by TTX, suggesting that
the Ca2+ influx was a secondary result  of pyrethroid-
dependent activation of VGSCs. 

Interestingly,  a  recent  study  using  specific  VGCC
antagonists  in  order  to  identify  the  VGCC subtypes
affected by allethrin indicated that allethrin stimulates
the ω-conotoxin GVIA-insensitive current  and inhibits
the  nimodipine-insensitive  current  [34]•.  This
differentiated modulation of various VGCC subtypes by
allethrin,  and  possibly  by  other  pyrethroids,  may
explain the observation of conflicting results between
studies. 

Studies  in  synaptosomes  [35]• showed  that
deltamethrin  acts  as  a  VGCC  agonist,  opening  the
CaV2.2  channels,  and  thus  increasing  the  Ca2+-
dependent  release  of  neurotransmitters,  which  may
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Figure  4: Honeybee VGCCs underlie many physiological roles and could be targeted by insecticides, leading to
toxicity  and  impairment  of  the  honeybee  behaviour. VGCCs,  underlying  many  intracellular  processes,  play  crucial
physiological roles in honeybee nervous system and muscles (indicated in blue). Studies with neurotoxins and insecticides,
including notably pyrethroids, show that they target insect or mammalian VGCC, blocking or increasing their current. We can
therefore hypothesize that insecticides lead to deleterious effects by targeting honeybee VGCCs, as described in the red box.
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undergo  neuroexcitatory  effects.  Inversely,
deltamethrin causes a partial block of CaV2.2 channels
expressed in Xenopus oocytes. But when this channel
is  mutated  on  a  critical  amino  acid,  mimicking  a
permanent  phosphorylation,  then  deltamethrin
increases peak current amplitude of CaV2.2 channels
[36]•.  These  observations  suggest  that  post-
translational modifications of VGCC subunits,  and so
regulatory proteins, could modify the effects produced
by  deltametrin,  and  possibly  by  other  pyrethroids,
contributing to obtain different results between models. 

In  adult  honeybee  skeletal  muscle  fibres,  allethrin
blocks the nifedipine-sensitive voltage-dependent Ca2+

current,  which  underlies  the  action  potential
depolarizing  phase  and  the  Ca2+ release  from
sarcoplasmic reticulum very tightly [5]••. This block of
muscle VGCCs reveals myotoxic effects of pesticides
in honey bees. 

From these different studies, we can conclude that
pyrethroids  either  block  or  facilitate  Ca2+ entry  into
neurons or muscle cells.  These effects appear to  be
dependent on species, tissues, VGCC subtypes, their
post-translational  modifications  and  the  pyrethroids
employed. The specificity of the insect VGCCs and the
poor foreseeability of the studies don’t allow us a direct
extrapolation to honey bee, but  suggest  that  VGCCs
have  to  be  considered  as  potential  targets  for
pesticides. 

Conclusions 
The identification of voltage-dependent Ca2+ currents

in neurons and muscle cells reveals the importance of
VGCC in the physiology of honey bees (Figure  4). In
muscle fibres, VGCC underlie the rising phase action
potentials  and  proper  contraction.  Moreover,  Ca2+

currents were recorded in all studied neurons, and are
particularly  involved  in  long-term  memory.  Recently,
studies have demonstrated that some neurotoxins from
venoms target specifically VGCCs and are considered
as  potential  prospective  insecticides.  Certain
pyrethroids,  widespread  insecticides  known  to  target
VGSCs,  modulate  VGCCs by  blocking  or  enhancing
their  activity.  Recent  interesting  studies  demonstrate
that  post-translational  modifications  can  modify  the
pyrethroid  effects  on  VGCCs.  Together,  these
observations suggest that VGCCs could be involved in
the chronic toxicity in honey bees induced by sub-lethal
expositions  of  insecticides  (Figure  4).  Therefore,  it
appears  necessary  to  understand  thoroughly  the
physiological  roles,  the  biophysical  properties  and
pharmacology  of  VGCCs  in  honey  bees.  The  two
ongoing challenges are the development of molecular
tests assessing the toxicity of agricultural insecticides
and  the  production  of  specific  insecticides  safer  for
honey bees. In this way, the cloning and expression of
the identified VGCC subunits in the genome of  Apis
mellifera as well as the development of molecular tools,
including antibodies and siRNA, could lead to a better
understanding  of  both  the  physiological  functions  of
VGCCs  in  insects  and  the  molecular  effects  of
insecticides.
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